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Introduction
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X could be a set, a group, a topological space,...

A symmetry of X is a bijection X → X that preserves some desired structure of X.

Example. If X = {1, 2, 3}, a symmetry of X is a permutation of these 3 elements.

Question. What are the symmetries of an object X?

The symmetries of X form a group under composition.
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Example. Consider the 2-sphere S2.

S2 =
{
x ∈ R3 : ||x|| = 1

}
.

Geometric viewpoint: The symmetries of S2 are isometries, bijections preserving Euclidean distance.

Every∗ isometry of S2 is a rigid rotation of R3.

* orientation-preserving

So Isom(S2) = SO(3).

Fix an orthonormal basis of R3. Then SO(3) is representable as the set of 3× 3 matrices with real
entries of determinant 1.

Question. But what is the shape of SO(3)?
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The shape of SO(3)

Every rotation is uniquely determined by an axis and an amount to rotate by, from 0 to π radians.

Consider the solid ball of radius π.

πB3 =
{
x ∈ R3 : ||x|| ≤ π

}
.

Rotate about the axis determined by v by ||v|| radians
using the right hand rule.

If v ∈ πB3 has ||v|| = π, then v and −v determine the
same rotation of R3.

So SO(3) is the quotient space of πB3 obtained by identifying antipodal points on the boundary of πB3.

This quotient space is RP 3, 3-dimensional real projective space.
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We can understand the symmetries of S2 by understanding the shape of its isometry group SO(3).

The n-th homotopy groups characterize the n-dimensional holes in a space.

Let X be a space, and fix a baspoint x0 ∈ X.

Consider the set of loops in X based at x0.

Two loops α and β based at x0 are path homotopic if α can
be continuously deformed to β, keeping x0 fixed.

X

x0

The loops α and β are homotopic to the constant loop at x0.

But γ is not homotopic to the constant map to x0, so γ is nontrivial.
This is capturing the hole in X.

The fundamental group π1(X,x0) is the set of homotopy classes of loops
in X based at x0. One defines πn in a similar fashion.

α

β

γ
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The shape of SO(3)

A nontrivial loop γ γ has order 2: γ2 is contractible

Traverse γ twice Push γ2 to surface Reflect one copy of γ
to antipodal side

Contract the loop on
the surface

x0

γ is the only nontrivial loop in SO(3) based at x0, up to homotopy.

So π1(SO(3), x0) ∼= Z/2Z, the group of order 2. πn(SO(3), x0) =


Z/2Z n = 1

0 n = 2

Z n = 3



MG On Diffeomorphism Groups of Surfaces 8/33

We now understand SO(3), the group of orientation-preserving isometries of S2.

If we allow orientation-reversing isometries, then Isom(S2) = O(3).

O(3) is representable as the set of 3× 3 real matrices with determinant ±1, so O(3) consists of two
copies of SO(3).

This holds in general: O(n+ 1) is the isometry group of Sn =
{
x ∈ Rn+1 : ||x|| = 1

}
.

Question. What happens if we remove the restriction that symmetries of S2 must be isometries?
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We now require that symmetries of S2 preserve the structure of S2 as a smooth manifold.

Such maps are called diffeomorphisms, smooth maps with smooth inverses. They form the
diffeomorphism group Diff(S2).

U

Example: point-pushing. U a neighborhood of a point p ∈ S2. f the
identity on S2 \ U , f pushes p within U .

p
Every isometry of S2 is a diffeomorphism, so O(3) ⊂ Diff(S2).

There exists a one-parameter family of diffeomorphisms of S2 between f
and id, so f is in the identity path component of Diff(S2).

The isometry of S2 given by −I3 ∈ O(3) is not isotopic to the identity. So O(3) is not path-connected.
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Question. Did we obtain “more” symmetries of S2 by considering diffeomorphisms, not just isometries?

Answer. In some sense, no! Why? O(3) is a deformation retract of Diff(S2).

Conjecture (Smale). Let n > 0. Then O(n+ 1) is a deformation retract of Diff(Sn).

The conjecture holds in dimensions n < 4.

The conjecture fails in dimensions n ≥ 4.

• n = 1 is a standard exercise.

• n = 2 was proved by Smale (1959).

• n = 3 is a result of Hatcher (1983).

• n > 4 was disproved by a larger body of work, see Hatcher (2012).

• n = 4 was disproved by Watanabe (2018) and Gabai, Gay, and Hartman (May 2025).
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Connected closed surfaces are completely classified.

The orientable surface Σg of genus g:

g = 0 g = 1 g = 2

· · ·

The nonorientable surface Nh of genus h:

a

a

Question. Let S be a closed surface. Is Isom(S) a deformation retract of Diff(S)?

h = 1 h = 2

· · ·

Σg = #gT

Nh = #hP
2
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Let Σg be a orientable closed surface of genus g ≥ 1. g = 2

Σg has a Riemannian metric which has constant curvature on Σg.

Let Isom(Σg) be the group of bijections of Σg which preserve this Riemannian metric.

Theorem (Hurwitz, 1892). If g > 1, then Isom(Σg) is finite.

If Isom(Σg) is a deformation retract of Diff(Σg), then the components of Diff(Σg) are contractible.

• g = 1: This metric has constant zero curvature on the torus, so the torus is flat.

• g > 1: This metric has constant negative curvature, so Σg is hyperbolic.
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Theorem (Earle-Eells, 1969; Gramain, 1973). Let S be a compact, connected, smooth surface that is
not homeomorphic to the sphere, projective plane, torus, or Klein bottle. The surface S may or may not
have boundary. Then the components of Diff(S) are contractible.

We follow Hatcher’s exposition of Gramain’s 1973 proof, which uses purely topological methods.

So there are not meaningfully “more” diffeomorphisms than isometries of S.
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Technical Tools
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Definition. A map p : E → B is a fiber bundle with fiber F ⊂ E if E is locally arranged as the product
B × F .

Fiber bundles

p−1(U) U × F

U

h

p
π1

We call h the local trivialization, B the base space, E the total space, and F the fiber.

Write F → E
p−→ B.

That is, if every point b ∈ B has a neighborhood U such that there exists a homeomorphism
h : p−1(U) → U × F such that this diagram commutes.
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Fibrations

Definition. Let p : Ỹ → Y be a map, and let X be a space. A lift of a map
f : X → Y is a map f̃ : X → Ỹ such that p ◦ f̃ = f .

Ỹ

X Y

p
f̃

f

Definition. Let p : E → B be a map. We say that p has the homotopy lifting property with respect to
a space X if given a homotopy gt : X × I → B and a lift g̃0 : X × {0} → E of g0, there exists a
homotopy g̃t : X × I → E lifting gt.

The map p is a fibration if p has the homotopy lifting property with respect to all spaces X. A Serre
fibration has the homotopy lifting property with respect to all n-disks.

Proposition. Every fiber bundle is a Serre fibration.
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The Long Exact Sequence of a Fibration

Theorem. Suppose p : E → B is a Serre fibration, and choose basepoints b0 ∈ B and
x0 ∈ F = p−1(b0). Then the induced map p∗ : πn(E,F, x0) → πn(B, b0) is an isomorphism for all
n ≥ 1. Hence, if B is path-connected, we have the long exact sequence

· · · → πn(F, x0) → πn(E, x0)
p∗−→ πn(B, b0) → πn−1(F, x0) → · · · → π0(E, x0) → 0

Proved using the long exact sequence of a pair and relative homotopy groups.
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Restriction Maps are Fibrations

Theorem (Palais, 1960). Let M and W be smooth manifolds, and V a compact submanifold of W .
Then the restriction map resV : Emb(W,M) → Emb(V,M) to V is a fiber bundle.

Example. Given a smooth surface S and a point x0 ∈ S, the evaluation map evx0
(f) = f(x0) is a

fibration:
Diff(S;x0) → Diff(S)

evx0−−−→ S

Diff(S;x0) is the set of diffeomorphisms of S which fix x0.

We study these fibrations induced by restriction using their long exact sequences.

· · · → πn Diff(S;x0) → πn Diff(S) → πn(S, x0) → πn−1 Diff(S;x0) → · · ·
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Covering Spaces

Definition. A map p : X̃ → X is a covering space if every x ∈ X is contained in an open set U such
that p−1(U) is a disjoint union of open sets in X̃, each of which is mapped homeomorphically onto U
by p.

The space X̃ is the universal cover of X if X̃ is simply connected.

One can show that p has the homotopy lifting property with respect to all spaces.

Proposition. Every manifold has a universal cover.

Example. The universal cover of the figure 8 is the
Cayley graph of the free group on 2 generators.

· · ·· · ·

· · · · · ·

· · ·· · ·

...

...

...

...

...

...

So if X is connected, p is a fiber bundle with discrete fiber.
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The Earle-Eells Theorem
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Theorem (Earle-Eells, 1969; Gramain, 1973). Let S be a compact, connected, smooth surface that is
not homeomorphic to the sphere, projective plane, torus, or Klein bottle. The surface S may or may not
have boundary. Let Diff(S) be the group of diffeomorphisms of S which are the identity on a collar of
the boundary ∂S. Then the components of Diff(S) are contractible.

Gramain’s proof proceeds in three steps.

Steps 1) and 2) are proved using fibration arguments.

We will prove step 3) today.

1) If S has no boundary, there exists a surface S0 with boundary such that Diff(S) is homotopy
equivalent to Diff(S0).

2) The case of nonempty boundary holds, provided a certain space of arcs is contractible.

3) This arc space is contractible.
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The space of arcs

Suppose S has boundary, and pick points p, q ∈ ∂S. Let α be a proper neat arc in S from p to q. Let
Arc(S, α) be the space of all proper neat arcs in S joining p and q which are isotopic to α via an isotopy
which fixes p and q.

Theorem. The space Arc(S, α) is contractible.

p q
α

We prove the case where p and q are in different components of ∂S
using fibration arguments.

We will prove the result for when p and q lie in the same boundary
component using a nifty covering space argument.
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Proposition. Suppose the endpoints p and q of the arc α lie in different boundary components of S.
Then Arc(S, α) is contractible.

q
p

S
q

TM

01

α
p

α

Obtain T by gluing in a disk to the component of ∂S containing q.

By Palais, we have a fibration:

Arc(S, α) is a path component of the fiber, so it suffices to show that the fiber has contractible
components.

Emb((I, 0, 1, int I), (S, p, q, intS)) → Emb((M, 0,M \ 0), (T, p, intT ))
resD2−−−→ Emb(D2, intT ).

We proceed by considering another fibration induced by restriction.

Proof.
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q
T

p
α

Due to the result of Palais, we have a fibration:
Emb((D2, 1, D2 \ 1), (intT, q, intT \ α(I))) → Emb((M, 0,M \ 0), (T, p, intT )) resI−−→

Emb((I, 0, I \ 0), (T, p, intT )).

By technical lemmas, the fiber and base space are contractible.

The long exact sequence of this fibration and Whitehead’s Theorem imply that
Emb((M, 0,M \ 0), (T, p, intT )) is contractible.
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Recall the first fibration:

Emb((I, 0, 1, int I), (S, p, q, intS)) → Emb((M, 0,M \ 0), (T, p, intT ))
resD2−−−→ Emb(D2, intT ).

By another technical lemma, πn Emb(D2, intT ) = 0 for all n ≥ 2.

By the long exact sequence of this fibration, πn Emb((I, 0, 1, int I), (S, p, q, intS)) = 0 for all n > 0.

Whitehead’s Theorem implies that Emb((I, 0, 1, int I), (S, p, q, intS)) has contractible components.

Conclude that Arc(S, α) is contractible.

We have shown that πn Emb((M, 0,M \ 0), (T, p, intT )) = 0 for all n > 0.
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Form T by gluing a 1-handle to ∂S around p.

Cut T along β to form U , so U is homotopy equivalent to S.

Since p and q lie in different boundary components of T , Arc(T, α) is contractible by the previous
argument. So πn Arc(T, α) = 0 for all n > 0.

We will show there exists injections πn Arc(U,α) → πn Arc(T, α) for all n > 0.

The resulting fact that πn Arc(U,α) = 0 for n > 0 implies the space is contractible by Whitehead’s
Theorem.

p

q

p

q

β

p

q

β1 β2T US

α α α

Proposition. Suppose the endpoints
p and q of the arc α lie in the same
boundary component of S. Then
Arc(S, α) is contractible.

Proof.
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We construct this injection by considering a certain covering space of T .

Since T is homotopy equivalent to S ∨ S1, π1(T ) ∼= π1(S) ∗ Z.

We will explicitly construct the covering space T̃ of T corresponding to the (conjugacy class) of the
subgroup π1(S) of π1(T ).

p

q

p

q

β
TS

α α
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Let E be the universal cover of T .

· · ·

· · · · · ·

· · ·· · ·

...

...

...

...

...

β̃1 β̃2

E1

E2

· · · E is a “thickened” Cayley graph of
the free group on n generators.

Cut along a lift β̃ of β to obtain E1

and E2.

...
p

q

β
T

α E1 and E2 are homeomorphic.
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Form the covering space T̃ of T by gluing E1 and E2 to U along β1 and β2.

Let α̃ be the unique lift of α in U ⊂ T̃ .

Arc(U,α) Arc(T, α) Arc(T̃ , α̃)
i1

i=i2◦i1

i2

p

q

E1 E2

β̃1 β1 β̃2 β2

︸ ︷︷ ︸
U

T̃

Let i : Arc(U,α) → Arc(T̃ , α̃) be the composition. It suffices to show i induces injections on πn.

So we define a map r : Arc(T̃ , α̃) → Arc(U,α) such that r ◦ i is homotopic to the identity.

The map r will be the restriction of the final map of an isotopy we construct.

α̃

p

q

β

p

q

β1 β2T U

α α
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· · ·· · ·

· · ·

· · ·· · ·

...

...

...

...

β̃1

Ei \ ∂T̃

contract
branches

(0, 1)× [0, 1)

β̃1
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p

q

β1 β2

︸ ︷︷ ︸
U

︸ ︷︷ ︸
V

︸ ︷︷ ︸
V

contract
fibers

p

q

β1 β2

︸︷︷︸
V

︸︷︷︸
V

T̃0

︸ ︷︷ ︸
E1

︸ ︷︷ ︸
E2

Let T̃0 be T̃ without the portion of ∂T̃ lying in E1 and E2.

Let V be a neighborhood of T̃ containing E1, E2, β1, and β2.

Isotope T̃0 into U ⊂ T̃ by contracting the fibers [0, 1) ∈ (0, 1)× [0, 1).

Define r : Arc(T̃ , α̃) → Arc(U,α) to be the restriction of the final map of this isotopy.

︸ ︷︷ ︸
U

α̃ α̃
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We see that r ◦ i is homotopic to the identity map on Arc(U,α).

Therefore the induced maps (r ◦ i)∗ and id∗ are equal.

Since id∗ is an isomorphism and (r ◦ i)∗ = r∗ ◦ i∗, i∗ : πn Arc(U,α) → πn Arc(T̃ , α̃) is injective.

Since πn Arc(T, α) = 0, we have πn Arc(U,α) = 0.

This statement holds for all n > 0, so by Whitehead’s Theorem, Arc(U,α) is contractible.

Since U is homotopy equivalent to S, conclude that Arc(S, α) is contractible.

Arc(U,α) Arc(T̃ , α̃) Arc(U,α) πn Arc(U,α) πn Arc(T̃ , α̃) πn Arc(U,α)
i

r◦i≃pid

r i∗

r∗◦i∗=id∗

r∗

Arc(U,α) Arc(T, α) Arc(T̃ , α̃) πn Arc(U,α) πn Arc(T, α) πn Arc(T̃ , α̃)
i1

i

i2 (i1)∗

i∗

(i2)∗

Then i∗ is injective implies (i1)∗ : πn Arc(U,α) → πn Arc(T, α) is injective.

Let n > 0.
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Thank you!
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